True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars
نویسندگان
چکیده
a Earth and Planetary Science, 307 McCone Hall #4767, University of California, Berkeley, CA 94720, United States b Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC, United States c Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street Cambridge, MA, United States d Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada
منابع مشابه
Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history
Building upon previous studies, we have used Mars Orbiter Camera and Mars Orbiter Laser Altimeter data to characterize in detail the newly discovered north polar basal unit. Lying stratigraphically between the polar layered deposits, from which it is likely separated by an unconformity, and the Vastitas Borealis Formation, this unit has introduced new complexity into north polar stratigraphy an...
متن کاملA paleomagnetic analysis of Cambrian true polar wander
The latest Neoproterozoic through Cambrian is one of the most remarkable intervals in geologic time. Tectonically, the period from 580 to 490 Ma marks a time of rapid plate reorganization following the final stages of supercontinental breakup and Gondwana assembly. The apparent speed at which this reorganization occurred led some to propose a link between tectonic events, biologic changes and c...
متن کاملVolatile-rich Crater Interior Deposits on Mars: an Energy Balance Model of Modification
Introduction: Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circum-south polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated f...
متن کاملPolar Wander of Mars Driven by Degree-1 Mantle Convection and Its Implications for the Formation of the Crustal Dichotomy and the Tharsis Rise
The topography on Mars is dominated by the crustal dichotomy between the northern and southern hemispheres and the Tharsis rise on the equator[1]. No explanation has been offered so far as to why the dichotomy should be in its current orientation rather than another. The geoid is currently dominated by Tharsis [2] and rotational stability suggests that a Tharsis-sized load would induce polar wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009